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Motivation



Motivation

Why did I choose this title?
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Motivation

• sentiment classification
• topic classification
• language identification
• intent classification (chatbots)
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Prevalence in benchmarking models

• Multitask Benchmarking: GLUE (Wang et al., 2018)
• Dynamic Sentiment Analysis Benchmark (Potts et al., 2021)
• Benchmarking Few-shot performance of Large Language

Models (LLMs) (Gao et al., 2021)
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Speculative reason for prevalence

• They are easier to annotate
• Because of this, sentence-level classification datasets are often

large - better for deep learning models
• Conceptually they allow for simpler train/test procedures
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Today’s goal

Sentence classification is often not an
ideal way to benchmark models.
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Problems with sentence-level
classification



What values do we care about?

The Values Encoded in Machine Learning Research (Birhane et al.,
2021)

1. performance,
2. generalization,
3. efficiency,
4. researcher understanding,
5. novelty,
6. building on previous work
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Accuracy/F1/BLEU

These allow for fair comparison of new models across many tasks.

Allows the community to focus on a single number and be happy
when the numbers go up.

”We’ve achieved superhuman performance on task B!”
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Case study: sentiment analysis

• Movie Reviews dataset (Pang et al., 2002)
• Camara Review dataset (Hu and Liu, 2004)
• Subjectivity dataset (Pang and Lee, 2004)
• MPQA Subjectivity dataset (Wiebe et al., 2004)
• Stanford Sentiment Treebank (Socher et al., 2013)
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Case study: sentiment analysis

Current SOTA on several of these datasets is incredibly high.

• Stanford Sentiment Treebank binary: 97.5
• Movie Reviews binary: 92.5
• Subjectivity dataset: 95.5

Are the models really that good?
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Not really...

We collected a subset of sentences that four models (BOW,
BiLSTM, ELMO, BERT) all failed on.

Error types can roughly be divided into the following categories:

• annotation related (incorrect label, mixed sentiment)
• data related (non-standard spelling, emoji)
• setup related (negation, modality, amplifiers, polarity shifters,

polarity reducers)
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Sentiment analysis is not solved!

The sentence-level setup hides the fact that models perform poorly
on certain subsets of the data:

• negation
• modality
• compositional knowledge (amplifiers, reducers)
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Simplification
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Simplification

MPQA dataset (Wiebe et al., 2005)
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Simplification

Stanford Sentiment Treebank (Socher et al., 2013)
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Simplification

Many other sentiment datasets...
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Simplification

They have been converted to sentence classification and further
binarized.
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An example from language identification
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An example from language identification
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Error analysis at sentence-level is difficult

Although there has been some back and forth on whether this is a
useful approach or not

• Attention is not Explanation (Jain and Wallace, 2019)
• Attention is not not Explanation (Wiegreffe and Pinter, 2019)
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Sentence-level prediction is not always particularly informative

If we have a model that performs binary sentiment prediction at
97.5 percent accuracy (superhuman level!)...

what would it mean if that model predicts ’positive’ for the
following sentence?

“James went to the store.”
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Do large language models reduce
these problems?



Large language models

ELMoULMFiT

BERT

Transformer
GPT

Bidirectional LM

GPT-2

Larger model
More data

Grover
Defense

ERNIE 
(Tsinghua

)

ERNIE (Baidu)
BERT-wwm

+Knowledge Graph

KnowBert

Neural entity linker

VideoBERT
CBT

ViLBERT
VisualBERT

B2T2
Unicoder-VL

LXMERT
VL-BERT
UNITER

Cross-modal

XLNet

MASS
UniLM

XLM
UDify

RoBERTa

Permutation LM
Transformer-XL
More data

+ Generation

Longer time
Remove NSP
More data

Cross-lingual

MT-DNN

Multi-task

MT-DN 

Knowledge distillation

SpanBERT

Span prediction
Remove NSP

Whole Word Masking

 By Xiaozhi Wang & Zhengyan Zhang @THUNLP

MultiFiT

Multi-lingual

Semi-supervised Sequence Learning
context2Vec

Pre-trained seq2seq
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Gains in performance

Kiela et al. (2020) Dynabench 18



Benchmarking

Sentence classification commonly used in benchmarking large
language models.

Of the tasks used, largest gains usually on sentence-classification
tasks.
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Better numbers

Gains on SST-2 (binarized sentence classification)

• ELMo (from bert paper): 90.4 (Peters et al., 2018)
• byte mLSTM: 91.8 (Radford et al., 2017)
• BERT: 94.9 (Devlin et al., 2019)
• Electra large: 97.1 (Clark et al., 2020)
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Few shot learners

(Brown et al., 2020)
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Few shot learners

21



Few shot learners

(Schick and Schütze, 2021) 21



Few shot learners

(Gao et al., 2021)
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Do these models lead to better generalization?

There is a growing amount of evidence that they have serious
limitations.

Let’s take negation as an example.

Large-scale LMs seem to fail completely at handling most negation

• Ettinger (2020) What BERT Is Not...
• Kassner and Schütze (2020) Negated and Misprimed Probes...
• Hossain et al. (2020) An Analysis of Natural Language

Inference Benchmarks through the Lens of Negation
• Ribeiro et al. (2020) Beyond Accuracy...

22



Do these models lead to better generalization?

There is a growing amount of evidence that they have serious
limitations.

Let’s take negation as an example.

Large-scale LMs seem to fail completely at handling most negation

• Ettinger (2020) What BERT Is Not...
• Kassner and Schütze (2020) Negated and Misprimed Probes...
• Hossain et al. (2020) An Analysis of Natural Language

Inference Benchmarks through the Lens of Negation
• Ribeiro et al. (2020) Beyond Accuracy...

22



Do these models lead to better generalization?

There is a growing amount of evidence that they have serious
limitations.

Let’s take negation as an example.

Large-scale LMs seem to fail completely at handling most negation

• Ettinger (2020) What BERT Is Not...
• Kassner and Schütze (2020) Negated and Misprimed Probes...
• Hossain et al. (2020) An Analysis of Natural Language

Inference Benchmarks through the Lens of Negation
• Ribeiro et al. (2020) Beyond Accuracy...

22



Do these models lead to better generalization?

There is a growing amount of evidence that they have serious
limitations.

Let’s take negation as an example.

Large-scale LMs seem to fail completely at handling most negation

• Ettinger (2020) What BERT Is Not...

• Kassner and Schütze (2020) Negated and Misprimed Probes...
• Hossain et al. (2020) An Analysis of Natural Language

Inference Benchmarks through the Lens of Negation
• Ribeiro et al. (2020) Beyond Accuracy...

22



Do these models lead to better generalization?

There is a growing amount of evidence that they have serious
limitations.

Let’s take negation as an example.

Large-scale LMs seem to fail completely at handling most negation

• Ettinger (2020) What BERT Is Not...
• Kassner and Schütze (2020) Negated and Misprimed Probes...

• Hossain et al. (2020) An Analysis of Natural Language
Inference Benchmarks through the Lens of Negation

• Ribeiro et al. (2020) Beyond Accuracy...

22



Do these models lead to better generalization?

There is a growing amount of evidence that they have serious
limitations.

Let’s take negation as an example.

Large-scale LMs seem to fail completely at handling most negation

• Ettinger (2020) What BERT Is Not...
• Kassner and Schütze (2020) Negated and Misprimed Probes...
• Hossain et al. (2020) An Analysis of Natural Language

Inference Benchmarks through the Lens of Negation

• Ribeiro et al. (2020) Beyond Accuracy...

22



Do these models lead to better generalization?

There is a growing amount of evidence that they have serious
limitations.

Let’s take negation as an example.

Large-scale LMs seem to fail completely at handling most negation

• Ettinger (2020) What BERT Is Not...
• Kassner and Schütze (2020) Negated and Misprimed Probes...
• Hossain et al. (2020) An Analysis of Natural Language

Inference Benchmarks through the Lens of Negation
• Ribeiro et al. (2020) Beyond Accuracy...

22



Do these models lead to better generalization?

- Furthermore, papers showing improvements on sentence
classification datasets often do not provide any error analysis

- Without these, we cannot know a priori where models still fail

23



What can we do instead of sentence
classification?



Option 1: Evaluation and reformulation of tasks

1 Label
per
sentence

Entity1

Entity2

Relation

24



Structured Sentiment

Given a sentence, find all opinion tuples, where

an opinion tuple consists of 4 elements:

• Holder
• Target
• Expression
• Polarity

Several of these can be implicit.

Some     others     give     the      new     UMUC      5      stars     -      don't     believe     them   . 

positive negative

holder target expression targetexpression
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Structured Sentiment

Dataset Languages # sents. Ref.
NoReCfine Norwegian 11,437 (Øvrelid et al., 2020)
MultiBooked Basque, Catalan ˜1600 (Barnes et al., 2018)
OpeNER en, es, it, de, fr, nl ˜2500 (Agerri et al., 2013)
MPQA English 10,048 (Wiebe et al., 2004)
Darmstadt English 2803 (Toprak et al., 2010)

26
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Structured Sentiment
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Advantages and Disadvantages

Advantages:

• more realistic task
• more informative predictions
• easier to perform error analysis
• harder to do well with simple heuristics

Disadvantages:

• harder to annotate well
• more expensive
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Option 2: Creation of challenging datasets
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Option 2: Challenging datasets using linguistics!

(Ettinger, 2020)
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Option 2: Challenging datasets using linguistics!
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Option 2: Challenging datasets using domain knowledge!

(Ribeiro et al., 2020)
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Option 2: Challenging datasets using domain knowledge!
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Option 2: Challenging datasets using error analysis techniques!

negation modals sarcasm comparatives emoji spelling ...
Reasonable Model 50.0 45.0 63.0 30.0 55.0 14.0 ...

Better Model 55.0 48.0 62.0 50.0 58.0 14.0 ...
Even Better Model 55.9 46.0 66.2 49.3 69.0 20.4

(Barnes et al., 2019)
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Option 2: Challenging datasets using adversarial examples!
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Option 2: Challenging datasets using adversarial examples!

33



Option 3: Change annotation paradigm

Previous paradigm

train dev test
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Conclusion



Use sentence classification with caution

Performance might not correlate well with downstream
performance on other tasks.
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Use datasets as originally intended

Avoid simplified versions of data.
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if you still really want to do sentence classification...

• consider additional kinds of evaluation, i.e.,
• CheckList,
• Dynabench,
• one of the many challenge datasets that have appeared for

many tasks
• Don’t report just performance.

• With the available data and software, an analysis of model
failure and behavior has never been easier.
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if you are conducting an annotation project...

• consider annotating a more complex, realistic version of the
task

• try to include other meta-data that will enable testing model
behavior further

• concentrate on adversarial curation
• consider concentrating more on creating representative

dev/test sets than large training sets
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Returning to the original question

Is it time to move beyond sentence classification?

• The final answer to this depends highly on your task...
• but for many tasks: sentiment analysis, emotion analysis, etc.

I would suggest that we move on.
• The datasets were often annotated for a different purpose and

later simplified for convenience.
• We have models and software to perform the full tasks now,

no need to simplify.
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Questions?



Jeremy Barnes

https://jerbarnes.github.io/

jeremy.barnes@ehu.eus
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